
ISSN 0265-2919 

80 

“nce inlet apd ne aaa 
tiesto: anni site bitin ShienRnSpnsedekinr deen as theehiahsiatancinsrseertos been ere ree 

aoe 

sail 

gsc enn hee? 
msi 

Bulellee 
; 

SA R195 Sing $4.50 USA & 



ne oe Be si 

CONTROLLING INTEREST We look 
at the fundamental components of a 
computer-controlled system 

RIFLE RANGE The Stack Light Rifle 
brings authenticity to arcade-style games 

CONTINUING SERIAL We examine 
the way serial files are created, accessed 
and updated 

SET PIECE A detailed look at the design 
and function of an R-S flip-flop 

1) Suggest a reason why removing the barrel 
PROGRAMMING PROJECTS 

J reduces the accuracy of the Stack Light Rifle. 

2) ‘Feedback’ is considered a disadvantage on an 
GRAPHIC DESIGN In this new series 224 audio amplifier. When is it useful to a computer? we create intricate geometric patterns from 
simple programs 

DEFINING TERMS We show you how 239 
to define your own sprite graphics on the 
Commodore 64 

3) Why is a NOR gate useful in the construction of 
flip-flops? 

4) Which binary number would you use to set bit 7 
in a byte to zero? What is the name of this 
operation? 

se 

FROM CAD/CAM TO CALL A weekly _- (2. 
glossary of computing terms LDA ADR1 LD HL, ADR2 

ADC ADR2 ADDA , (HL) 
STA ADR3 LD (ADR3), A 

A3) POKE 53280,0: POKE 53281, 

A4) There can be up to eight different sprites operating at any 
one time (one for each priority level). 

A5) Address, Control and Data. 

A6) Originally CP/M stood for Control Program/Moniter, but has 
become accepted as Control Program for Microprocessors. 

GENERAL ROUTINE By implementing 
symbols and labels in our programming, we 236 
can create portable routines 

POPULAR CHOICE Digital Research is 
the company that developed the popular 
CP/M operating system 

COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH 



COMPUTER-CONTROLLED DEVICES/ APPLICATION | 

CONTROLLING 
INTEREST 

Home computer owners have the choice of 
either buying software or writing their own 
programs. But few would make the choice 
between buying or building their own 
peripheral equipment. Yet there are now 
components on the market that make it easy 
to build a computer-controlled device that 
does exactly what you want it to do. 

The only reason you really need to set up a micro 
so that it opens the curtains in the morning or 
waters the plants while you are on holiday is 
because it’s fun to do. And there’s nothing wrong 
with doing something simply because it’s fun. 
After all, hobbyists spend all those hours writing 
their own software because they enjoy doing it. 

At the present time, building your own 
peripheral devices may be regarded as ‘playing 
around’ with home-made gadgets, but this could 
prove to be a productive activity in the long run. 
Many people believe that computer-controlled 

robots and other devices will soon be an integral 
part of our lives (in much the same way as 
computers have become commonplace in as little 
as five years), and therefore skills learned now 
could be invaluable in the future. After all, giant 
computer companies like Apple and Atari began 
in the back garages of people just ‘messing about’ 
with electronic gadgets and components. 

There are a number of elements needed in any 
computer-controlled system. Obviously there 
needs to be the computer itself and the item under 
control. There also needs to be some means for the 
computer to convey the control messages to the 
device, and software to enable the computer to 
decide what those messages should be. Yet this is 
only half the story. The computer usually needs to 
have some way of measuring what effect its control 
is having so that it can make fine adjustments. This 
is known as feedback and without it the computer 
is as uSeless as a blindfolded car driver. 

All computer-controlled systems rely on 
control by electric signals. Unfortunately, the tiny 

MIKE BROWNLOW 

Remote Control 

Linking a computer to 
equipment provides all sorts of 

possibilities for automatic 

operation under the control of 

a program. The computer can 

respond at pre-programmed 

times or react to events such 

as a drop in temperature or a 

burglar alarm being Set off 

oS © 

THE HOME COMPUTER ADVANCED COURSE 221 



Control Connection 
Interfaces suitable for control 
uses are available ready-made 

for use with many home 
micros, notably the BBC and 
ZX Spectrum. These units are 
usually switching units based 
on relays. The computer can 
turn the current to particular 
equipment on and off and can 
read back whether or not the 
sensor is ‘on’ or ‘off 

IAN McKINNELL 

electric signals used inside a computer are far too 
small to be of direct use. Even a device as small as a 
torch bulb uses considerably more power than any 
of the parts inside a computer; so some means is 
needed of translating the tiny voltages inside a 
computer into more powerful ones (and 
sometimes these can be as great as mains 
voltages). This is usually done in a number of 
stages. 

The first stage is inside the computer itself. The 
computer needs some way of sending signals to 
the outside world. This is done by choosing a 
section of the computer’s memory and setting it 
aside for just this purpose. The microprocessor 
will send messages to this part of memory just like 
any other, but when they get there they are treated 
differently. This is because this part of memory is 
known as a user portand the information stored in 
it can be read electronically from outside the micro 
without affecting its working in any way. 

Some micros have a user port as standard, 
others can have them fitted as an option. By itself 
the user port can be used to turn LEDS (light- 
emitting diodes) on and off, but most practical 
systems need other components as well. Perhaps 
the most useful is to add a few electronic 
components, plus a small extra source of electric 
power, to allow relays to be controlled. Relays are 
essentially switches that can turn on and off 
relatively large electric currents and yet can be 
controlled by small electric currents. ‘They provide 
one of the best ways of converting the small 
electric pulses used by a computer into useful 
currents. One of the first aims of anybody 
experimenting with computer control should be to 
get a system that allows relays to be used. ‘This is 

because so many different things can be controlled 
by relays. Everything from electric motors, water 
pumps, lights, bells and buzzers to model railways 
and radio-controlled model cars. 

Most relays used by home enthusiasts can cope 
only with the sort of equipment that will run off 
batteries. This gives plenty of scope for most 
projects. A few people will find they need larger 
relays that can switch mains current. Because 
mains. electricity is extremely dangerous, only 
properly tested commercial products should be 
used, and not many are available. People working 
with small voltages can choose either to buy or 
make ready-made relay switching units that plug 
straight into a computer. 

Mains switching allows the computer to control 
heaters, powerful lights and dozens of other 
household items. It also enables the computer to 
act as a timer to turn the television on to catch a 
favourite programme, or to turn the house lights 
on and off to deter burglars. 

At the present time, a computer has to be 
directly connected to the units it is controlling, and 
this is rather a limitation. Several companies are 
developing products to overcome this. ‘These work 
by enabling the wires that carry the mains 
electricity around the house to carry data as well. 
The system will have a computer in one room 
sending signals to s/ave units around the house, 
which are plugged into ordinary sockets. The 
computer can send individual messages to each 
slave telling it to turn the power on or off. Any 
ordinary household item, such as a table lamp, 
television or heater, can be plugged into the slave 
and thus controlled by the computer. 

FEEDBACK SIGNALS 
It has already been said that almost all computer- 
controlled systems need some kind of feedback to 
measure how the system is working. It might seem 
that there’s no need for feedback when a computer 
is just turning lights on and off. Yet it would be 
much better if the computer could tell when it was 
dark outside and turn the lights on in response to 
that information. It would also be useful if the 
computer could tell when people enter a room so 
that it could turn the light on for them. If a 
computer is controlling a heater it needs feedback 
to tell it how warm the room is so that it can keep a 
constant temperature. 

There are two types of feedback signals. Some 
signals can only be on or off, with no intermediary 
states. Such a signal might be a switch that can tell 
if a window is open or shut, or that the door bell is 
being pressed. User ports are able to read in this 

| 
b 

E a 
! 

222 THE HOME COMPUTER ADVANCED COURSE 



type of on/off signal. 
A more useful, but slightly more complicated 

type of feedback gives an analogue signal. Such a 
signal can be one of a range of values and so can be 
used to measure how hot it is, how far an object has 
moved or turned, how heavy something is or what 
voltage a battery is giving. A device that can accept 
this sort of signal is an analogue-to-digital 
converter (A/D for short), so-called because it 
takes the varying range of values from the 
equipment being controlled (the analogue signal) 
and converts these into a digital form that the 
computer can understand. 

Having feedback makes a big difference to what 
can be done under computer control. If a motor is 
turning a wheel, the computer might be able to 
estimate how far the wheel has turned in a certain 
time. This wouldn’t work, however, if a load is put 
on the wheel or the batteries driving the motor are 
going flat, because the wheel would turn more 
slowly. An optical sensor could tell the computer 
each time the wheel completed one revolution, so 
that the computer could keep track of it. 

Some types of electric motor made specially for 
control uses have a kind of feedback built in to 
them. This means the computer sends a signal 
telling them to move to a particular position and 
the motor keeps working until it has reached it. 
There are two main types of such motors: stepper 
motors and servo motors. A stepper motor can 
spin continuously, like an ordinary motor, or it can 

COO AEE 
aA 
RSS 

aon Nei 

Lt 

i ee 

__ INTERFACE [i 

be stopped at any position. However, it lacks 
power and so can only cope with small loads. 
Servo motors are powerful but can only turn 
through a small angle—usually just over 90 
degrees. This is often converted into a push/pull 
type of movement. Both stepper and servo motors 
need special control units to make them work with 
computers and these are not available for many of 
the less popular makes of home computer. Servo 
motors are used in many robot arms. A number of 
small robot arms are available that can interface 
with home computers, but they are very 
expensive. It is possible to build them from a few 
servos at lower cost. 

The final category of computer-controlled 
device that we will consider here need a varying 
voltage to control them. One example of this is a 
small electric motor that will spin at different 
speeds, depending on what voltage is applied to it. 
The opposite of an A/D converter, a digital-to- 
analogue converter (or D/A for short) changes 
the digital signals the computer uses into varying 
voltages. This could, for example, be used to 
produce sound by connecting it to a loud speaker. 

Using microcomputers to control other 
equipment is just like writing your own software. 
You have to combine a good idea with some 
technical knowledge, and a large amount of time. 
Often the results aren't up t6 commercial 
standards, but it is much more fun ‘doing it 
yourself’ than buying mass produced products. 

ce OY Seenareree oP 

THE HOME COMPUTER ADVANCED COURSE 223 

ax pL <a 

ii OD tee 

| ets — — 

704 

KEVIN JONES 

ANDY LESLIE 



> PROGRAMMING PROJECTS/GEOMETRIC DESIGN 

GRAPHIC 
DESIGN 
In this new series, we look at some of the 
interesting routines that can be created 
from a few lines of Basic code. These articles 
are intended to give you some ideas and 
Start you off on your own programming 
projects. In this instalment, we see how 
mathematical graphs can be turned into 
intriguing designs with simple instructions. 

Drawing a graph of a mathematical expression is 
easy enough. You simply take a range of values for 
one of the variables in the expression and work out 
the corresponding values for the other variable. 
With a simple graph such as Y = X?, we could 
work out a table like this: 

meee eae -1 0123. 4-5 
moon 10? 9° 4 610149 16 25 

Drawing the points on a piece of squared paper 
and then joining them up with a smooth curve 
gives us the familiar necklace-shaped curve. The 
curve is the graph of Y=X’*. Another way of 
thinking of the curve is that it is the path traced out 
by a point that is moving along Y=X?. The path is 
often called a locus and by manipulating and 
combining different loci, we can produce stunning 
patterns with the minimum of effort. 

To do this, let’s look at a well-known locus — 
the circle. The best way to describe a circle with a 

formula is slightly more complicated than the 
method used above. Both the X and Y parts of the 
equation are defined in terms of a third variable or 
parameter. By varying this parameter through a 
given set of values, pairs of Xs and Ys can be 
worked out. The circle is given by the following 
equation: 

X = R SIN (1) 
Y=R COS (\) 

If we work out a set of values for X and Y as the 
angle I is turned a full circle (from 0 to 360°), we 
get the locus of a circle. The following short 
program for the Spectrum will create a circle. (See 
the “Basic Flavours’ box for other Basic versions. ) 

10 REM Circle plot 

20 LET xm=256: LET ym=174: LET. xc=INT 

(xm/2):2 LET yc=INT (ym/2) 

50 LET r=50 

LET s=PI/20 

FOR i=O TO 2*FI STEF s 

INK 2: PLOT xc+r*SIN (i) ,yc+r#COS 

NEXT i 

Note that by changing the STEP size between the 
points plotted, you can vary the definition of the 
circle and alter the speed at which it is drawn. Most 
dialects of BAsic are not fast enough to draw 
smooth circles from many individual dots at an 
acceptable speed. To overcome this, it is often 
preferable to use a number of straight lines to 
connect the points of the circle. With a large 
number of straight lines, you can achieve a 
reasonable compromise between the speed and 
smoothness of the drawing. You can also use this 
formula to draw arcs and ellipses. For arcs, you 
select different values of I. For ellipses, you give R 
a different value in the X formula than in the Y 
formula. However, the circle is an adequate basis 
from which to create some interesting patterns. 

Our first pattern is created by drawing a line from a 
fixed point to every point we plot on the locus. The 
following programs will position the point in the 
centre of the circle and to the circle’s left 
respectively. 

224 THE HOME COMPUTER ADVANCED COURSE 

The next step is to use a moving point rather than a 
fixed one. We will plot two loci simultaneously and 
draw lines to connect corresponding points on the 
two paths. The simplest design this will create is 
two nested circles linked by numerous straight 
lines. 



GEOMETRIC DESIGN/PROGRAMMING PROJECTS _ 2 

The program we have developed now incorporates 
enough information to draw hundreds of patterns. 
All we need to do is to change one or both loci. A 
simple variation is to swap SIN and COS in one of 
the formulae. Alternatively, you could use powers 
of SIN and COS (multiplying them ee tO 
produce different eect. atl TT 

There are many variations on these ideas. A 
standard mathematics textbook will provide you 
with the formulae for creating alternative curves. 
However, you will probably find experimenting with 
your own programming a more worthwhile 
pastime. A few simple modifications of the 
program will even make the computer do the 
experimenting for you. The final program here 
cycles indefinitely through a number of randomly- 
generated patterns — although it will not cover all 
the possibilities. 

Basic Flavours 
The programs listed here will run on a 16 Kbyte and 48 Kbyte 
Spectrum. However, converting them and using these ideas on 
other machines is very simple. Your micro needs high resolution 
graphics (preferably at least 256x176), a floating point BASIC. 
with the functions SIN and COS, and a command to plot 
individual points and draw straight lines. 

The first adjustments necessary are to XM and YM, the _ 
maximum X and Y values that can be plotted on your machine. - 
Depending on the functions you use, you may find that other 
constants in the program, such as R and S, need to be changed. 
Next, you must make sure that your micro is in an appropriate 
graphic mode and select a colour for plotting. Finally, you need 
a command to draw lines between the co-ordinates given in X 
and Y and P and Q. On the Spectrum this has to be done with 
PLOT followed by DRAW. The DRAW command is complicated 
because on the Spectrum it is always relative to the first point 
plotted, whereas in this case we need to draw to a particular 
absolute position. Most micros have an absolute line draw 
function and this stage is therefore much simpler. 

BBC MICRO All the BBC’s modes use a grid of 1280x1024 for 
plotting and you should find that MODE 0 produces spectacular 
results. Use GCOL to select the plotting colour and MOVE and 
DRAW to draw the lines, 

DRAGON 32/64 The Dragon's PMODE 4 provides a 256x192 grid 
suitable for these programs. Use SCREEN 1, 0 or SCREEN 11 to 
select either a green or buff background. The LINE command can 
be used ( LINE (X,Y)-(P,Q),PSET ) to draw the lines. 

COMMODORE 64/VIC-20 These machines have suitable high 
resolution graphics but unfortunately do not provide appropriate 
commands. To run these programs, then, you need either to 
provide your own point and line commands or use a BASIC 
extension cartridge such as Simon’s BASIC. 

CAMPUTERS LYNX The Lynx is very suited to this sort of work as 
it has a full eight colour 256x248 graphics display. Like the 
Spectrum, this doesn't need a mode command to switch it on. 
Use INK to select the colour of the design and MOVE and DRAW 
to draw the lines. 

ORIC 1/ATMOS HIRES turns on the Oric’s 240x200 graphics 
screen. The lines can be drawn by using CURSET to move to 
their start point (X,Y) and then DRAW to draw the line. DRAW 
on the Oric is relative so the DRAW command has to be of the 
form DRAW p-x,q-y to work. 

— 2 

same program. Now see . you can nfinda a way yto ‘on 
Spirals. | | 

2) Try using other ee see as sar ve TAN to 
generate loci. Be warned that these functions have to 
be used carefully because they tend to generate 
awkward numbers. However, you should be able to 
produce some interesting results. | 

3) Produce animated versions of the programs. By 
using arrays to record the last five lines drawn, you 
should be able to show a group of five lines “on 
each other around two loci. | 

4) How about creating patterns based on three loci? 
Make two of them very simple (perhaps a circle anda 
Straight line) in order to keep the image uncluttered. 

THE HOME COMPUTER ADVANCED COURSE 225 



SERIAL 
concept of sequential (or serial) files. We 
looked in detail at how they are constructed 
and discussed how they are manipulated by 
the operating system. Here we look at 
methods for using serial files in your own 
programs, and show how to overcome some 

A sequential file is a solid block of data on a disk o 
tape, and as such there are limitations as to how the 
file can be accessed and updated. To retrieve any 
one item, you must first read through all the 
preceding data. To update the file, it is usually 
necessary to make a copy of the file up to the point 
where changes are needed, then append the 
alterations to the new file and resume copying the 
original file immediately after the changes. 

It is important to realise that information has to 
be organised in a suitable way inside the file. The 
choice of how this is done is up to the programmer 
and will depend on the application at hand. Ifitisa 
file containing English text then it is likely that it 
will be just a sequence of ASCII codes followed by 
an end of file marker. However, if the file is to 
contain a database such as a catalogue of books, 
then the information needs to be organised 
appropriately. The common way to do this is to 
divide the file into records and fields. Each book 
has its own record (entry) in the file and within 
each record are a number of fields, such as the 
book’s title, author, publisher and so on. Within a 
sequential file, these divisions have to be marked 
by using special characters placed between items 
of data. 

This is usually done by using a carriage return 
character (ASCII code number 13) to act as a 
marker between the fields and records. Since the 
file will have the same number of fields in each 
record, it’s easy for the program to keep track of 
where a record ends and a new one begins. 

Once a sequential file has been created, you 
need to be able to access and update it. The basic 
operations in filing are: retrieving records, adding 
records, deleting records and amending (editing) 
records. The diagrams show the various ways of 
achieving these with sequential files. Because you 
can only read through a sequential file in order and 
can’t freely change data within it, these operations 
work by reading through the file, creating a new 
copy as they go. Any information that is to be 
changed is then written at the appropriate times 
into the new file as it is created. Finally, the new file 
becomes the current file and the old one is either 
discarded or kept on as a ‘back-up’ copy. 

226 THE HOME COMPUTER ADVANCED. COURSE 

These simple techniques are the basis of all 
sequential filing routines. However, they make a 
major assumption about the capabilities of the 
operating system — that it can have two different 
files open at once in order to read from one and 
write to another simultaneously. This is not 
possible on all disk systems and is possible only on 
those cassette-based micros that have two cassette 
recorders attached. Both the Grundy Newbrain 
and Commodore PET range feature twin cassette 
interfaces for exactly this reason. Machines with 
single cassette drives are limited to files small 
enough to be read into memory in their entirety 
and processed there. 

These methods of file handling also have an 
interesting side effect. After any alterations have 
been made to the file (either additions, deletions 
or amendments) you have two copies of the file: 
an old one that was the file before it was updated 
and a new copy with the changes. It is standard 
business practice to retain both files so that if 
something should happen to the new one, there is 
still a copy that is only one set of changes (or 
generation) out of date. In fact, most businesses 
keep three generations of any given file: the new 
file is called the ‘son’ file and the preceding file is 
kept on as the ‘father’ file. The file that was used as 
the basis for the father file is known as the 
‘grandfather’ file. 

These techniques can work with files that are 
too big to fit into the computer’s memory in their 
entirety, because only a portion of the file, usually 
a handful of records, is actually being processed at 
any one time. With small files, however, much 
better performance can be gained by reading the 
whole file into arrays in memory and processing it 
there. All the file operations can be carried out at 
high speed in memory before the complete new 
file is written back to disk or tape. 

This approach has one major danger — changes 
to the file are made permanent only when the 
information is written back to cassette or disk and, 
therefore, data could be lost if the program or 
computer is crashed or switched off while running. 
If you are using programs that work in this way, 
you should make sure that you frequently write 
copies of the file to storage and that a current copy 
has been made before the program is terminated. 
A little experience with sequential file handling 

will show you that the techniques involved, 
although cumbersome, are mostly common sense. 
On many small systems, sequential files are the 
only file structure provided. When we move on to 
look at random access files, we'll discover 
techniques that complement serial files by 
providing simple and fast access and updating. 



anendnc a record (altering the 
information within it) is 

been reached 

the program. : 

records from the old file are 
copied across to the new fil.. 

d 

through the file 

Retrieving | | 
‘Records 
Sequential files are not very 
 guited to the sort of _ 

application where you fetch - 
ld records out of the file. _ 

_Eachtime you searchfora 
new one, the whole file has to 
be read again, which is ver 
time consuming. If you are | - 
searching through alistof =| | 

names for a particuiar record | 
then your program will just | 

_ go through a loop, examinit 
each record and carrying 

_ it doesn’t match. If you n 
-___ anumber of records, the 

____be read one after anothe 
only in the order they oc 
__. the file. For this reason, you — 

| often find sequential files are 
‘sortedinsome order | 
(alphabetically, for a _ 
=“ ney are a — 

Nn mediately Soe . _ 

- Records | 
Records can be added to a 
file in one of two ways. 
Some BASICs have an — 
APPEND command that lets 
you add directly onto the 

end ofa file. To add records 
to files that don’t use this 
command, you have to read 

7 through the whole file and 
| produce a copy ofitina — 
new |file. Instead of closing 

_| the new file, you then 
| write the new records onto” 

the end of it and close both 
files. In both cases, it is 
‘necessary to update the 
record count. If it’s stored 

| with the file, the update 
routine should make sure — 

-| that the new value is 
written to the file 
immediately so that there 
is no possibility of losing 
the information 

THE HOME COMPUTER ADVANCED COURSE 227 



SET PIECE 

Ba nie ey a 

The circuits that we have so far considered in 
the Logic course all produce given outputs 
upon receiving certain input signals. 
Sequential circuits, on the other hand, are 
capable of producing a steady output signal 
in response to a single input pulse. We 
examine in detail the design and function of 
such a circuit — the R-S flip-flop. 
De a Aaa 

Several kinds of flip-flop exist, although all o 
them operate from the same principles. The R-S 
flip-flop has two input and two output lines. 

The circuit is designed so that the output lines, Q 
and Q, are always opposite to each other. That is: 

if Q= 1 then Q = 0 (the SET state) 
if Q = 0 then Q = 1 (the RESET state) 

Assuming that the flip-flop is initially in the RESET 
state, then a pulse on the S line causes the circuit to 
‘flip’ over to the SET state. 

1) Initial State (RESET) 

When the input pulse on the S line ceases, the 
circuit remains in a stable SET state. 

3) Circuit Remains Stable (SET) 

228 THE HOME COMPUTER ADVANCED COURSE 

A pulse sent along the R line flips (flops) the 
circuit back to its original RESET state. 

4) A Pulse On The RESET Line 

Having now described the function of an R-S flip- 
flop, let’s take a closer look at the logic elements in 
the circuit. 

R-S FLIP-FLOP CIRCUIT 
An R-S flip-flop can be constructed using several 
techniques, such as linking two NAND gates 
together, or, as in our example here, by linking two 
NOR gates together so that the output from each 
gate forms one of the inputs to the other. It is this 
‘looping back’ of the logic signals that gives the 
flip-flop its ‘memory’ capacity. 

Let us then trace the SET and RESET functions of 
the flip-flop and see how they are achieved by this 
combination of NOR gates. If we assume that 
initially the flip-flop is in the RESET state and there 
are no input pulses then the circuit will be in a 
stable state. (Remember that a NOR gate only 
gives an output of one if both inputs are zero.) A 
pulse along the S line will upset this stable 
arrangement causing. the ‘not Q’ (Q) output to 
change to zero. This affects the ‘looped-back’ 
input to the second NOR gate (2), causing the 
output from that gate, Q, to change to one. This in 
turn means that if the pulse is still present on the 
first NOR gate (1), then the inputs to NOR 
gate(1) will both be one. Thus, the output from 
NOR gate(1) will still be zero and so the circuit has 
reached a stable state, i.e. it is SET. 



1) Initial State (RESET) 

Even when the pulse is removed from the S line 
the circuit continues in a stable state. When a pulse 
is sent along the R line, the circuit is again put into 
an unstable state. After a similar process to that 
already described, the circuit again settles down to 
a stable RESET state. 

3) Circuit Remains Stable (SET) 

REGISTERS 
The microprocessor of your home computer is 
largely made up of a series of registers, such as the 
accumulator, instruction and index registers. Most 
registers can hold eight-bit words — that is, binary 
numbers in the range 0 to 255. As these registers 
have to accept and remember binary information 
it is not surprising that they are made up of a series 
of eight flip-flops. To simplify matters, we will here 
look at how a four-bit register accepts and stores 
numbers. If we wish to store the binary number 
1011 in the register then all that is required is for 
the binary pattern to be fed to the S lines. 

Notice that in this arrangement the ‘not Q’ output 
is unused. As the binary input pattern is applied to 
the S lines of the flip-flops, so the Q lines produce a 
corresponding output. If we wished to overwrite 
the first number stored in the register with another, 
say 0110, we may think that all we need to do is 
present this new binary pattern to the S lines of the 
flip-flop. In fact, if we did this the resulting number 
stored in the register would be 1111. The ones in 
the outer positions of this number are hangovers 
from the previous number. 

The solution to this problem is to reset each flip- 
flop before storing the second number. As all flip- 
flops need resetting at the same time, it is 
convenient to connect them together allowing a 
reset of the register to be triggered by one signal. 

In the next instalment of the course, we will look at 
other sequential circuits, including the D-type flip- 
flop and the J-K flip-flop. 

LIZ DIXON 

: 

| 
| 

| 

: 

: 

THE HOME COMPUTER ADVANCED COURSE 229 

I 



RIFLE 
RANGE 
SS 
The Stack Light Rifle (SLR) is designed to 
bring added realism to ‘shoot-em-up’ games 
on home computers. Combining the 
appearance of a gun with a camera-style 
optical system, the SLR is hardly a precision 
instrument, but its use of light pen 
technology allows the user to dispense with 
joystick or keyboard control. 
SS 

The main component of the Stack Light Rifle 
System is the electronic target pistol that is 
connected to the computer by a generous length of 
lead. At the computer end, depending on the 
version, there is a connector for the appropriate 
socket or edge connector. On the ZX Spectrum 
version the connector contains two chips and a 

couple of simple components to interface the main 
electronics inside the gun to the computer. To 
make the pistol more accurate—and to turn it into 
a rifle— it is supplied with a shoulder stock that 
clips and secures to the rear of the pistol, a barrel 
and a make-believe telescopic sight. 

The electronics inside the pistol consist of a light 
detector or photo-diode and a small amplifier and 
buffer. Light coming down the barrel is focused by 
a small plastic lens onto the photo-diode, and the 
device is sensitive enough to detect the changes in 
intensity of the picture. Once boosted by the 
amplifier, the signal is clipped to provide a digital 
pulse rather than an analogue waveform and is 
then fed to the computer via the switch. The screen 
position that is being scanned at that moment is 
the position the rifle is pointing at. As the 
computer receives the pulse from the Light Rifle it 
compares the value of its scan registers with the 
screen position of the target and, if a match is 
found, the played has scored a direct hit. 

Variants of the Light Rifle are currently 
available for the ZX Spectrum, Commodore Vic- 
20 and Commodore 64 and all perform the same 
function. Stack provides three games on cassette 
with the Light Rifle but that’s about the limit of the 
support provided. Although various independent 
software houses produce games that would appear 
to be eminently suited to this type of user control, 
very few have actually produced or converted 
programs to work with it; Micromania is an 
exception. Possibly even more damaging to 
potential sales of the Light Rifle is the fact that 
Stack doesn’t provide any driver routines to allow 
users to write their own programs. This omission, 
together with the lack of any technical details on 
how it works, means that the Light Rifle is not a 
good alternative to a joystick. 

The Light Rifle is based on the same principle of 

230 THE HOME COMPUTER ADVANCED COURSE 

Out Of Sight . 

SIGNAL AMPLIFIER 

TRIGGER SWITCH 

CHRIS STEVENS 

- PHOTO-SENSITIVE CELL 

POWER SUPPLY 



operation as a light pen, but is much bigger and is 

designed to be held up to about three metres (10 

feet) from the television set rather than in contact 
with the screen. To help filter out any ambient 
light, the Light Rifle is provided with both a long 

dark tube (the barrel) and a lens. These combine 
to provide a reasonable — if not perfect — degree 

of accuracy, and allow the user to ‘shoot-em-up’ 
from the comfort of an armchair. The games that 
are supplied are rather poor examples of what 
should be possible; both the use of graphics and 
the ‘playability’ are hardly outstanding. 

One of the major problems in programming 
light pens, or even giant versions such as the Light 
Rifle, is that the program needs to be very 
efficiently written. In all the examples supplied by 
Stack, the games come to a halt when the trigger is 
pulled. This is because the requirement of 
continuously scanning the screen, as is usually 
done for a light pen, would slow the games down 
too much. So when the trigger is pulled on the 
Light Rifle, the software must freeze the action 
and establish whether the target on the screen is 
aligned with the position of the gun. Once the 
software has determined whether or not the player 
has hit the target, the game can continue. In 
theory, when the trigger has been pulled, the 
amount of code necessary to establish the screen 

position of the next scan detected by the gun 
should be very small indeed, but observing the 
software in action indicates that this isn’t always 
the case. 

On a computer such as the BBC, for which 
there is as yet no version of the Light Rifle, the 
provision of a light pen facility within the video 
chip would make the task of the software much 

simpler. The Commodore 64 offers such a system, 
but the ZX Spectrum, on which the Light Rifle 
was tested, lacks the facility and the deficiency 
shows up in the time taken to calculate the position 
of the rifle when the trigger is pulled. 

RASTER SCAN 

BARREL 

The photo-cell in the Light Rifle detects the moving dot of the 
raster scan as it refreshes the television picture. The software 
continually monitors the raster counter register in the computer, 
so that it always knows the position of the raster on the screen; 
when the light rifle signals that it has detected the raster, the 
software can convert the raster counter value into the X,Y 
screen co-ordinates of the Rifle’s point of aim 

IAN McKINNELL 

THE HOME COMPUTER ADVANCED COURSE 231 



DEFINING TERMS — 

The Commodore graphics set is extensive, 
but it is often necessary to create some 
special characters, or even to redefine the 
entire character set. In this instalment of our 
graphics series we introduce the techniques 
of user-defined graphics on_ the 
Commodore 64 and continue to develop the 
Subhunter game. 

The process of creating your own characters on the 
Commodore 64 is not straightforward: there are 
no special-purpose commands in Commodore 
BASIC, So the whole operation has to be carried out 
using PEEK and POKE to access and change the 
contents of memory. 

The Commodore 64 character set consists of a 
block of ROM starting at memory location 53248. 
Each character appears on the screen as a pattern 
of dots in an eight by eight dot matrix: describing 
this pattern of 64 dots requires 64 bits, or eight 
bytes. The eight bytes from location 53248 to 
53255 describe the ‘@ character, the first 
character in the set; it has a screen code of 0, which 
means that if you POKE the value zero into one of 
the bytes of video RAM, this character will appear 
on the screen. The next eight bytes, from 53256 to 
53263 describe ‘A’ (screen code 1), and so on. 
We cannot change these dot matrix definitions 

in ROM, so we must copy some or all of them into 
RAM and make the changes there. We can then 
make the Commodore use our RAM character set 
for writing on the screen, rather than using its own 
definitions in ROM. 

The ROM character set shares its address space 
in memory with input/output devices such as 
cassette players and disk drives. Normally, the 
6510A CPU treats this memory space as an input/ 
output area, but it can be programmed to regard it 
as the character set location. This may seem 
strange, but the CPU doesn’t normally do the 
work of accessing character definitions from 
ROM and sending them to the screen. That task is 
delegated to a subsidiary chip under CPU control. 
The contents of location 1 determine the status of 
I/O operations, and bit 2 of this location acts as a 
switch on the way in which the CPU regards the 
character set ROM. If this bit is set to zero, then the 
CPU finds the I/O devices occupying the space. 
The other bits of location 1 have similar special 
functions in controlling the system, so we must be 
careful not to alter any of them while changing bit 
2’s value. This is best achieved by using the logical 
operators AND and OR. 

Suppose that the contents of location 1 are: 

232 THE HOME COMPUTER ADVANCED COURSE 

|
 “
i
a
 

o. © se § & 3-2-7 2 

We wish to change bit 2 to zero. One way to do this 
would be to calculate the decimal value of 
01101011, and POKE it into location 1, but this 
works only if we know that the previous contents 
of location 1 were 01101111. A better way to adjust 
bit 2 is to use AND and PEEK. The following 
command PEEKs location. 1, thus establishing its 
original contents, ANDs them with 251 (11111011 
binary), and POKEs the result back into location 1: 

POKE 1,PEEK(1) AND 251 

The effect of this command can be illustrated here: 

= Initial contents 

= 251 binary 

| = Result of ANDing 
each pair of bits 

No matter what the original value of bit 2, ANDing 
it with zero will always produce a zero result; 
ANDing all the other bits of the location with one 
simply produces a copy of their original value. The 
binary number 1111101 (251 decimal) is called a 
mask or overlay, and here we are using it as an 
AAND-mask’. 

To set bit 2 to one without affecting any of the 
other bits, we use the following command: 

POKE 1,PEEK(1) OR 4 

Bit 

= Initial contents 

OR = 4 binary 

= Result of ORing 
each pair of bits 

This ensures that Basic will not overwrite our 
character set. When the copy is complete, the 
CPU can be reset to address the I/O devices, and 
the interrupt time re-started. 

The final piece of the jigsaw is forcing the 
screen-handling chip to use our character set, 
rather than the system set in ROM. Bits 0 to 3 of 
location 53272 point to the start address of the 
character set, and the following table shows how 
the Commodore 64 interprets the values of these 
bits as pointing to particular addresses: 



: 

The value of bit 0 in this register is unimportant, 
while bits 4 to 7 control other functions, and must 
be left unchanged. We use 11110000 (240 
decimal) as an AND-mask for this purpose, and 
00001110 (14 decimal) as an OR-mask to make 
the register point to 14336 — the start location of 
our character set: 

POKE 53272,(PEEK(53272) AND 240) OR 14 

Now, using a FOR..NEXT loop we can perform the 
actual copying. 

While a program is copying the ROM character 
set into RAM, the CPU cannot deal with I/O 
device interrupts. The keyboard, for example, 
interrupts the CPU every sixtieth of a second, 
causing it to scan the keyboard for a keypress. 
These interrupts are triggered by the system timer. 
If the CPU were interrupted by an I/O device 
while the character set was occupying the I/O 
ROM space (as is the case during copying), then 
the system would probably crash, and only turning 
the power off and on would reset the machine. 
Fortunately, we can disable the interrupt 
mechanism by setting bit 0 of location 56334 to 
zero; the other bits of this location must be left 
unchanged, so the following logical POKE 
command should be used: 

POKE 56334, PEEK(56334) AND 254 

Once the interrupts are disabled, and the CPU is 
forced to look at the character set in ROM, then 
copying can begin. 
We wish to copy, say, the 64 characters from 

‘@’ to “?’ — screen codes 0 to 63 — so we must 
copy the 512 locations (8X64=512) starting at 
53248 into a suitable block of RAM. Various 
areas can be used, and our choice here is a block 
starting at location 14336. This would normally be 
in the BASIC program area but we can protect it by 
lowering the top-of-memory pointer in location 
56, thus: 

POKE 56, 32 

DESIGNING NEW CHARACTERS 
Each character in the Commodore set is designed 
on an eight by eight dot matrix. Each row of the 
matrix is interpreted as a binary number (dots that 
are illuminated count as one, dots that do not 
show up on the screen count as zero) and so 
requires a byte of storage, and the entire eight-row 

character requires eight consecutive locations in 
memory. The starting location of the bytes 
describing any character can be calculated from 
the start address of the entire block, and the screen 
code of the particular character, thus: 

Start of character = 14336+8X(screen code) 

Once the locations of the bytes defining a 
character are known, we can POKE new values into 
those bytes, thus changing the dot patterns 
appearing on the screen when that character is 
printed. As long as the one character set is 
enabled, pressing the appropriate key will cause 
the new character to appear on the screen. In the 
demonstration program, we redefine the 
characters [,],£, and t (codes 27-30) as parts of a 
figure, and achieve animation by printing and 
overprinting different versions of the figure. 

128 64 32 16 

LIZ DIXON 
Figure it Out 
Characters are built in an eight 
by eight dot matrix, described 
in eight consecutive bytes. Each 
row of the character is- 
interpreted as a single-byte 
binary number, dots 
representing ones and spaces 
representing zeros. For use in 
Commodore 64 programs, 
these binary numbers must 
then be converted to decimal 

THE HOME COMPUTER ADVANCED COURSE 233 



Set up screen 
Initialise scores 

"* 
: LES IEY Eo EMS LR NE ae ae oe ad * : ’ aaa ce chat ratio pane 

Read in sprite data 
Initialise sprites 

Select submarine 

speed and depth 

oe ee eee anata Bar Ai Para Nt reen Me SKN 

cote: 
. rete *s 

et timer to zero oe vtetaty 
aerate Page 
¥ AMS 

Ngee Ce LE SPR eT te ag percep ae ot Torr heremorerna etsy 

Turn off sprites 

Reset ship position 

Accept keyboard : 
input . 

Paani Bat Select submarine 

speed and depth 

Move ship and 
submarine 

. o 
. 4 ot 

‘f 

spe! J 
bas ee ier 

AP 

seer atescore fe ae a F 

we 
aoe 

SOS Bead a £5 Citar eects eset ee és Dhara ew H, Pe ssi, (Me Moe Dea Ae ae EH at ad 

Select submarine 
— and aisee 

ME Oe eT al a ae oe oe PEP ge ee, 88 IR Oe I oe od oa ot Ep 

Select submarine 
speed and depth 

234 THE HOME COMPUTER ADVANCED COURSE 

Plotting 
Subhunter 
This is the layout for the 
Commodore subhunter game 
shown as a flow diagram. We 
have so far initialised the 
program and set the timer to 
zero. The next step will be to 
enter the main program loop 
itself, which will cause the 
ship and submarine to move 
while constantly updating the 
score and the timer 

oe hi score 

tare Ps 

iy 
aatote 

eset score a OM os ee 
ie; 
a 

pig 4 
a8 % 3 c Arse dees & 
LaPierre MM Mim raman ted cre moe pant pees ta 

Bae 

et timer ae S pole 

stot 
ee 

Picts a wena 

Turn on ship and 
submarine 

Subhunter Program 
The Commodore 64 has its own internal clock that can 
be used to time BASIC programs. The clock has six 
digits, rather like a digital watch, representing hours 
(00-23), minutes (00-59), and seconds (00-59). The 
clock can be accessed from BASIC through the string 
variable TIS. The value of TIS gives the time that has 
elapsed since the computer was turned on, but it can 
also be reset at any time. The following short program 
demonstrates how the timer works. 

The program runs in a continuous loop, printing the 
timer to the screen until you press the Run/Stop key. 

The Subhunter game we are writing requires a 
clock to be displayed on the screen and to end the 
game when three minutes have elapsed. The game 
clock, therefore, requires only the minutes and 
seconds parts of TIS. By using the string functions we 
can break TIS down as follows: 

— (TIS,2) 

TI$=HH(MM)(SS) 
MIDS iris 3,2) 

The two seconds digits can be stripped off by 
RIGHTS(TIS,2), and the minutes digits can be 
isolated by MIDS(TIS,3,2). 

The main program loop of our game starts at line 
200 and ends at 390. Load up the subroutine already 
typed in from the last section and add these lines: 

Line 140 re-sets the clock at the start of the program. 
Line 220 PRINTs the current value of the clock in 
minutes and seconds, separated by a colon. TAB(14) 
causes 14 spaces to be left before PRINTing and 
positions the clock in the middle of the screen. 
CHRS(5) will colour the characters white. Line 225 
converts TIS to a numeric quantity so that its value 
can be tested. If playing time has exceeded two 
minutes and 59 seconds, then the game Is at an end. 



COURTESY OF INTERGRAPH 

CAD/CAM 
Computer aided design and computer aided 
manufacturing are both terms that are more 
commonly referred to by their initials, and are 
frequently considered together as a single concept. 
In this context, the word ‘design’ generally refers to 
engineering or functional design, rather than 
aesthetic design — though computers are now 
making inroads into that field as well. 

There are three main advantages of using 
computers to aid in design. The first advantage 
concerns the whole area of graphical visualisation 
of the product being developed. Most CAD 
systems feature both a high resolution screen 
display and a full colour plotter for hard copy 

print-outs. The software used by such a system 
is really the graphical equivalent of a word 
processor package, permitting parts of an image to 
be amended, deleted, moved around or called up 
from a disk library of standard components. The 
more advanced models, which ‘think’ in three 
dimensions, allow a design to be viewed from any 
direction or angle. 

Secondly, a computer can perform all the 
tedious and time-consuming calculations required 
in the background, leaving the designer free to 
concentrate on the higher level decisions. Such 
calculations might include checking for clearance 
and stress, or evaluating the functions that define a 
curve used in the projected design. 

The third benefit involves taking this a stage 
further — using the computer to find the optimum 
design within given constraints. This may be 
optimising for weight, size, strength or cost. In 
many cases there is no formula for the optimal 
solution, but the computer can perform trial and 
error calculations thousands of times faster than 
an engineer. | 

Computer aided manufacturing is a very broad 
term, arguably encompassing the whole field of 
robotics. ‘There is now a general trend in industry 
away from fixed production lines towards flexible 
manufacturing systems (FMS), which can be 
easily re-programmed. This allows for the 
production of goods to be more closely related to 
sales. Another important aspect of CAM is CNC 

— computer numerically controlledmachine tools. 
A single CNC machine can replace dozens of 
fixed-position drills on a production line. 

CAI/CAL 
The use of computers in education is a 
controversial subject, even among those who 
support their introduction into schools. The 
debate centres on whether computers are best 
employed as aids to either teaching or learning. 
This distinction is made clearer by considering the 
differences between CAI and CAL. 

Computer aided instruction (CAI) can be 
defined as applying the computer to traditional 
methods of instruction. The computer is regarded 
as a combination of electronic textbook and 
electronic tutor. Typically, the student will work 
through a program on his or her own. The 
computer breaks down each lesson into modules, 
perhaps using graphics, animation or sound to 
make the material more interesting than it would 
be in a textbook or on a blackboard. At the end of 
each module, the computer tests the student using 
multiple-choice questions to find out how well the 
material has been understood. It allows each child 
to progress at his or her own pace, can backtrack 
when appropriate, and can keep a record of the 
child’s progress for the teacher to study. 

Proponents of computer aided learning(CAL), 
however, argue that for the first time the 
microcomputer allows us to place the emphasis on 
learning rather than on being taught, which may 
have been the only practical approach in the past 
owing to limited resources. CAL applications use 
the processing power of the microcomputer to 
create an environment in which the child can 
explore and learn — in much the same way as very 
young children learn about the world from playing 
with sand and water. 

There can be little doubt that computer aided 
learning results in a better understanding on the 
part of the child, but it must be remembered that 
CAL applications require a great deal of 
imagination and considerably more sophisticated 
programming than their CAI counterparts. 

CALL 
CALL is a programming keyword that instructs the 
computer to invoke another routine. Your 
computer may not feature this word in its 
dictionary, but it will certainly have an equivalent 
command. GOSUB is a form of CALL, as are the 
commands: PROC, SYS and USR. Another 
common use of this keyword is to mean ‘go into 
machine code from this point’. Effectively, the 
programmer is calling up another subroutine, but 
this one is written in machine code. 

The term originates from the early days of 
programming, when most programs were 
assembled by stringing together subroutines from 
a large library of functions called a ‘macro library’. 
When the CALL instruction was encountered, the 
computer literally had to ‘call up’ the lines of the 
appropriate subroutine from a disk file. 

THE HOME COMPUTER ADVANCED COURSE 2 3 5 



WZ (ae [TIN\ 

Making code 
relocatable, so that their execution is 
independent of their locations, requires the 
use of symbols and labels rather than 
absolute addresses and values. We study 
some more assembler directives and their (DA DATAT iD a ee 
role in program structure, and take a first LOOP ADC DATA? ADC A(DATA2 

look at Assembly language subroutine calls. BNE LOOP JR NZ.LOOP 
Because Assembly language is essentially a simple 
programming language composed of the 
‘primitive’ commands that the CPU can manage, 
you will find yourself constantly writing and re- 
writing fragments of program to do the same 
essential tasks that you take for granted as part of 
the instruction set of a high-level language — 
input/output handling, for example, or two-byte 
arithmetic routines. The sensible thing to do is to 
establish a library — on tape, disk or paper — of 
the most commonly used routines, and merge 
these into new programs as the need arises. 

There are two major problems associated with 
this, however. The first is the difficulty of writing 
important, and often lengthy, routines in a 
sufficiently general way that they can be inserted 
in different programs without adjustment or re- 
writing. The second problem is in writing useful 
routines that are not rooted in one set of memory 
locations, so that they can be relocated in memory 
through a new assembly with a different ORG 
address, and perform exactly the same function 
there as in their original locations. 

Both problems are aspects of the generality/ 
portability problem familiar to _ BASIC 
programmers, and are solved in much the same 
way — by using variables to pass values from 
program to subroutine; by using local variables in 
subroutines to make them independent of the 
larger program context; and by avoiding the use of 
absolute quantities (both numerical or string 
constants) and program line numbers. 

In Assembly language programming we have 
become used to the idea of memory locations as 
the equivalent of BAsic variables — programs 
operate on the contents of the locations, whatever 
those contents might be, in the same way that a 
BASIC program operates on the contents of its 
variables. Unfortunately, we have tended to refer 
to memory locations by their absolute addresses, a 
convenient habit at first, but one that must now be 
renounced in the name of generality. The answer 
is to use symbols instead of absolute addresses and 
values, and to use the range of symbolic forms 
offered by assembler pseudo-opcodes as the 
equivalents of both variables and program line 

236 THE HOME COMPUTER ADVANCED COURSE 

numbers. We have seen examples of both uses 
already. Consider this program, for example: 

DATA1 EQU $12 DATA1 EQU_ $12 
DATA2 EQU $79 DATA2 

RET 

Here we have two kinds of symbol, two values and 
a label, all used as the operands of the Assembly 
language instructions. Because of this, the 
program fragment is both general and able to be 
relocated. The only absolute quantities are the 
values of DATA1 and DATA2, and they can be 
initialised in the surrounding program, rather than 
at the start of the routine itself. 

There are other pseudo-ops that we have not 
yet discussed. In particular, DB, DW and DS 
(though, like ORG and EQU, they may differ from 
one assembler program to another). ‘These three 
directives, which stand for ‘Define Byte’, ‘Define 
Word’, and ‘Define Storage’, enable us to initialise 
and allocate memory locations, as in this example: 

: | 
D3A0. LABL1 
Daal =siCeos~=—sd LAB? 
D3B3 

LABL1 = D3A0: LABL2 = D3A1: LABL3 = D3A3 
DATA1 = D3A3 
ASSEMBLY COMPLETE — NO ERRORS 

In this full Assembly listing (the output of an 
assembler program) we see at the bottom for the 
first time a symbol table, consisting of the symbols 
defined in the program and the values they 
represent. There are several important things to 
notice in this fragment. First of all, in the line that 
begins LABL1, the DB pseudo-op is used. We can 
see from the listing that the ORG directive has given 
the address $D3A0 to LABL1, and the symbol table 
confirms this. The effect of DB here is to place the 
value S5F in the byte addressed by LABL1 — so 
memory location $D3A0 is initialised with the value 
S5F, as we can see in the machine code column of 
the listing. 

Secondly, LABL2 represents the address $D3A1. 
However, DW has the effect of initialising a ‘word’ 

consecutive bytes) of storage, so the value 
98CE is stored in locations $D3A1 and $D3A2 in lo- 

hi form — this can be seen clearly in the machine 



code column. Because DW automatically converts 
its operands into lo-hi form, it is most often used to 
initialise ‘pointer’ locations with addresses. LABL2, 
or location $D3A1, might be such an address — it 
points to location $98CE. 

The third thing to consider is that the 
instruction DS $10 has the effect of adding $10 to 
the program counter. This is clearer in the symbol 
table than in the actual listing — LABL3 represents 
the location $D3A3 (the location following the 
previous instruction), though it appears from the 
listing that its value is $D3B3. This is actually the 
location address of the next instruction after the 
DS instruction, so DS $10 has reserved a block of 16 
bytes (from $D3A3 to $D3B2 inclusive) between 
one instruction and the next. This is a process 
rather like putting long REM lines into a BAsic 
program to create unused space in the program 
text area that can then be POKEd and PEEKed as a 
machine code program area (see page 137). 

Finally, the last instruction uses EQU to set one 
symbol equal to the value of another, so that 
DATA1 has the value $D3A3 (the value of LABL3). 
This is another source of possible confusion. 
LABL3 is the symbolic representation of the 
location address $D3A3, so DATA1 EQU LABL3 
means ‘the symbol DATA! is to have the same 
meaning and value as the symbol LABL3’. The fact 
that the DB instruction has made the contents of 
SD3A3 equal to S5F has no significance for the 
meaning of the symbols LABL3 and DATAI. 
Keeping the distinction between a location and its 
contents clear in your mind is one of the most 
testing difficulties in the early stages of learning 
Assembly language programming. You may have 
had the same problem with Basic program 
variables and their contents. 

At first glance, the DB directive seems to 
duplicate EQU, but thisis not the case. LABL1 means 
‘the location $D3A0’, and DB S5F has initialised that 
byte with the value S5F, but, although the value of 
LABL1 is now fixed, the contents of the location it 
symbolises can be changed at any time (by storing 
the accumulator contents there later in the 
program, for example). Similarly, DATA1 is now a 
symbol whose value is fixed by the EQU 
instruction; its value cannot be changed by the 
program’s execution. And again, LABL3 points to 
the start of a 16-byte data area, the contents of 
which can be changed in the program, but LABL3 is 
itself unchangeable. 

This introduces, but does not exhaust, the 
possibilities of the new pseudo-ops. Consider this 
new version of the previous fragment: 

RG SD3A0_ 
‘MESSAGE 1’ 
S98CE 

LABL1 = D3A0: LABL2 = D3A9: LABL3 = D3AB 
DATA1 = D3AB 
ASSEMBLY COMPLETE — NO ERRORS 

The DB instruction has a string, ‘MESSAGE 1’, as its 
operand, and the assembler has initialised the 
locations from $D3A0 to $D3A8 with the ASCII 
values of the characters within the single quotes. 
This can be inferred from inspection of the 
location address column in the listing, and is partly 
confirmed by the machine code column — the 
contents of the three bytes from $D3A0 to SD3A2 
are shown to be $4D, $45, and $53, which are the 
hex ASCII codes for ‘M’, ‘E’, and ‘S’. 

This is a significant facility, not only because it 
relieves the programmer of the task of translating 
messages and character data into lists of ASCII 
codes, but also because it makes the listing much 
easier to read, and hints at the possibility of 
actually getting some screen output from our 
Assembly language programs. The latter is 
particularly significant because so far we have 
been restricted to storing results in memory and 
inspecting them using the Monitor program (see 
page 118). Naturally, we will be exploring screen- 
handling in the course, but there are still aspects of 
Assembly language that we need to investigate 
before going onto that topic. If, however, you 
think about our habit of storing results in memory, 
and if you understand already that memory- 
mapped screen displays are, in effect, only areas of 
memory, then you may be able to see a way of 
addressing the screen from a program. 

The most important aspect of this new DB 
facility is that it confers on LABL1 the status of a 

e 

last
 c 

| a 

WU (a ITN 

THE HOME COMPUTER ADVANCED COURSE 237 



WL i [TIX a 
ni 

Instruction Set 

BASIC string variable: When we write in BASIC: 

200 LET AS=“MESSAGE 1” 

then we are actually creating a pointer to the start 
of a table of bytes containing the ASCII codes for 
‘M’, ‘E’, ‘S’, and so on. Whenever the BAsIc 
interpreter encounters a reference to AS, it looks in 

its own symbol table to find the location at which it 
points — that is, the starting location of the 
contents of AS. Similarly, in our Assembly 
language program we can treat LABL1 as the 
equivalent of AS, given that we have already 
written a program fragment that allows us to 
manipulate a table using indexed addressing. 

The pseudo-ops, then, allow us to remove 
absolute addresses and values from our programs, 
and replace them with symbols. This has the effect 
of diminishing the problems of portability and 
relocatability. What we need now is to be able to 
access these portable, relocatable modules from 
the main program. In other words, we need a 
machine code equivalent of Basic’s GOSUB 
command. 

There is such an instruction, of course: JSR and 
CALL in 6502 and Z80 respectively. Both require 
an absolute address (which can be a label) as 
operand, and both have the effect of replacing the 

| Example: 

eae 
\_-~ Program 

Memory 

The contents of register Xa are _ 
| increased » oC Example: 
| | LOCATION =— MACHINE CODE 

__ F391 £8 
a ons 

aa —s 
Fer leraor 
Pre, 

ASSEMBLY LANGUAGE 

INX 

a 
\ Program 

Memory 

238 THE HOME COMPUTER ADVANCED COURSE 

yee i. ae JUMP RELATIVE on ZERO 

UV _ LOCATION MACHINE CODE ASSEMBLY LANGUAGE LOCATION MACHINE CODE ASSEMBLY LANGUAGE 

heopcode, =8=0St—i‘é‘éY#OéBFOO FO 16 BEQ $16 8F00 28 16 JR Z,$16 

_—~—éBO oo 7 {Program| | 02 _ we jfol 6. - _ {Program} {02 _| a a tol - 8] a ies 

ry | Counter = ae =Z ‘ moe Se — 

NO FFE : NO EFFECT DE c ae SsFOO =| | : a S8F00 

wo CLIC so omer 
NO EFFECT © 

contents of the program counter with the address 
that forms their operand. The next instruction to 
be executed, therefore, will be the first instruction 
of the subroutine so addressed. Execution 
continues from that instruction until the RETURN 
instruction — RTS and RET respectively — is 
encountered. This command has the effect of 
replacing the current contents of the program 
counter with its contents immediately prior to the 
JSR. or CALL instruction was executed. The next 
instruction to be executed, therefore, is the 
instruction immediately following the JSR or CALL. 
This is exactly the mechanism used by the BAsIc 
interpreter in executing and returning from 
GOSUBs. It’s easily understood as such, but it raises 
the question of how the old contents of the 
program counter are restored when the RETURN 
instruction is executed. The simple answer is that 
the JSR and CALL instructions first ‘push’ the 
program counter contents onto the stack (see 
illustration on page 136) before replacing them 
with the subroutine address; and the RTS and RET 
instruction ‘pop’ or ‘pull’ that address from the 
stack back into the program counter. The 
questions of what the stack is, how you push or 
pop it, and why you’d want to do so, are the 
subject of the next instalment of the course. 

Relative 28 (2 (2 bytes) 

Bone 

eae 
\_-~ Program 

Memory 

- - Impl <<. byes) 

} Example: 

LOCATION 

F391 

MACHINE CODE 
DD23 

ae 

ASSEMBLY LANGUAGE 
INC IX 

~ 

ae SF391 

Lt Gees 
\_-~ Program 

Memory 
LIZ DIXON 



aera 

—— 

COURTESY OF DIGITAL RESEARCH INC 

Since its introduction, the Control Program 
for Microprocessors (CP/M) has become 
the industry standard in operating systems. 
The phenomenal success of CP/M has 
changed the life of its designer, Gary 
Kildall, who left the teaching profession to 
found the company known as_ Digital 
Research. 

Gary Kildall, a member of the Intel team that 
developed the 8080 microprocessor, created his 
first version of the CP/M system in 1974 to 
support a compiler for pL/M, the first high-level 
language produced by Intel. In 1975, he added an 
editor (ED), assembler (ASM), and debugger 
(DDT). He offered the new operating system to 
Intel, who turned it down—which was probably 
Kildall’s luckiest break. Partnered by Dorothy 
McEwan, he started to publish hobbyist 
magazines and to sell CP/M privately. Kildall’s 
CP/M quickly outsold the hobbyist magazines. 

Whether by design or sheer good luck, Kildall 
had hit upon a system that greatly diminished the 
major problem of the microcomputer in its early 
years—compatibility. The three most significant 
consumer computers of the late 1970s (the PET, 
Apple, and Tandy) had incompatible disk 
operating systems, and independent software 
producers had to opt for one format or the other. 
Code had to be completely rewritten to make a 
software product work on a machine other than 
the one it had been designed for. But CP/M 
changed all that: its considerable popularity 
meant that a majority of manufacturers began to 

John Rowley, President of Digital Research Incorporated 

adopt it, thus creating a de facto ‘standard’. Many 
computer manufacturers who had chosen the Intel 
8080 or Zilog Z80 processors for their machines 
specified CP/M because it offered a simple way of 
handling access to the screen, printer, disks, 

keyboard and so on. And as its popularity 
increased, more and more CP/M software 
became available, providing an even greater 
incentive to adopt it. 

The Control Program for Microprocessors was 
at first licensed to a few select users. The now 
famous abbreviation initially stood for ‘Control 
Program/Monitor’, but this rather humble title 
was soon changed! By 1976, Kildall was 
overwhelmed by requests for the product. He 
resigned as professor of computer science at a 
naval college in Monterey and founded Digital 
Research at Pacific Grove, California. 

While CP/M was growing, Digital Research 
turned its attentions to the multiple-user systems 
and produced MP/M. This was intended to be 
compatible with CP/M in every respect, though in 
its early versions it had none of CP/M’s success. 
Partitioning of the user areas, and other 
configurations that a systems programmer might 
need to do, were by no means straightforward, and 
in some cases file handling differed from CP/M’s. 
However, since the physical costs’ of 
microprocessors have dropped as production has 
risen, the need for several users to share one 
processor has ceased to make economic sense, and 
the now-revised MP/M has not proved popular. 

Digital Research raised finance from several 
venture capital companies in 1981, to become a 
true multinational, with a notably strong presence 

LOGO Designs 
Digital Research has moved into 
languages and leads the field 
with its DR LOGO. Like all good 
LOGOs, grapnics are one of its 
strong points 

Business Graphics 
GSX is a pioneering software 
package designed to make 
graphics applications portable 
between different machines, 

such as the business graphics 
package shown here 

THE HOME COMPUTER ADVANCED COURSE 239 

IAN McKINNELL 



— 

in Europe (where it has offices in the UK, 
Germany and France). At about the same time, 
Digital Research was one of the front runners in 
securing the contract to develop an operating 
system for IBM’s newly-designed Personal 
Computer. Although Microsoft eventually won 
the IBM-PC contract, Digital Research was far 
from beaten. It has since updated CP/M for the 
Intel 8088/8086 processors in such a way as to 
make it look very similar to MS-DOS, and it has 
also gone a step beyond with Concurrent CP/M. 

Concurrent CP/M is the converse of MP/M, 
allowing several different programs to run 
simultaneously. With this program, a user may 
work on three different jobs at one time—say, 
spreadsheet, report generation and electronic 
mail—switching between them at will. Existing 
versions of Concurrent CP/M can display each 
screen—or a portion of it—simultaneously, using 
the ‘windows’ feature. New versions of 
Concurrent CP/M promise to run directly most of 
the programs written for the IBM PC-DOS. 
Among the strategic decisions that Digital 

Research and many other systems and language 
houses have taken, is that of moving all its 
development work into the c language, which is 
especially notable for its portability. Code written 
in c need only be recompiled for use on another 
processor, though this feature has led to 
accusations of cumbersome coding. It is better, its 
detractors argue, to do a proper job in assembler 
for each individual processor. However, it has 
become increasingly popular, and since the widely 
used UNIX operating system is itself written in c, 
the trend towards this language seems irreversible. 

Digital Research has certainly been consistent 
in its view that true portability is only possible 
through high-level languages. It now provides a 
variety of languages for a wide range of micros. At 
the lowest end of the market, however, Digital 
Research has set up a Consumer Products 

240 THE HOME COMPUTER ADVANCED COURSE 

Division that will sell Personal Basic, Personal CP/ 
M and its own version of Loco. Personal CP/M, 
like CP/M-86, is designed to be stored in ROM, 
and will soon be available on a Z80 chip by 
agreement with Zilog. Digital Research describes 
this as ‘microware’, and it is sure to prolong the 
active life of the vast number of ageing ‘standard’ 
CP/M programs by making them cheap enough 
for the home computer user. 

Further developments of considerable promise 
are VIP and GSX. VIP is a cheap visual ‘shell’ that 
allows program developers to present a uniform 
interface to the user, independent of the 
applications package being executed. Several 
applications may use the same data, and data can 
be transferred from one to another. In this respect, 
VIP is similar to Apple’s Lisa and Macintosh 
technology, but far less demanding of memory. 
VIP will run in any computer with more than 50 
Kbytes of RAM and equipped with 150 Kbytes or 
more of disk space. 
GSX is supposed to do for graphics what CP/M 

did for disks. It uses a standard set of graphics 
functions that can be used on a variety of different 
pieces of hardware. A GSX program will run on a 
colour screen, a black-and-white screen, a dot 
matrix printer and a plotter, without any changes. 
However, Digital Research is experiencing 
difficulty in creating a new graphics standard, 
because the system does not produce the same 
quality as programs that are written specially for 
one machine. Its popularity has also suffered 
because of a lack of software. 

Digital Research has established itself as one of 
the major software houses in the microcomputer 
business. It is not, however, resting on its laurels. 
After its venture into products such as GSX, VIP 
and Loco, there is potential to follow companies 
like Microsoft into the applications software field. 
With the unchallengeable background of CP/M’s 
success, the company looks set for a long future. 

COURTESY 

Digital Research Incorporated, 
Massachusetts, USA 



THE HOME COMPUTER ADVANCED COURSE 
INDEX TO ISSUES 1 TO 12 

& 
Absolute jumps 219 
Access time 13 
Accountant 121-122, 152-153 
Accumulator 13, 137 
Accumulator register 116 
Acorn 60 
Acoustic couplers 13, 101 
Acronym 13 
Active electrical components 138 
ADA 13 
A-D converter 28, 223 

Adder 28 
Adding machine program 170 
Adding records 227 
Address 28 
Address bus 135 
ADSR 28 
AIM 65, 109 
Alexander, Nick 180 
ALGOL 49 
Algorithm 49 
Allophones 49 
Alphabetical index program 205 
Alphanumeric 49 
Amending a record 227 
Analogue signals 223 
AND 8, 32, 46, 66, 145 
Ant Attack 6 
Apple computers 163 
Arithmetic logic unit 137 
Array 88 
Artificial intelligence 88 
ASCII 57, 108 
ASCII Microsoft 142 
Assembler 108 
Assembler directives 156 
Assembly language 108, 116 

subroutine calls 236 
pseudo-opcodes 156, 236 

Asynchronous transmission 108 
Atari 39-40 

disk commands 64-65 
600XL/S00XL 189-191 
&10 disk drive 63-64 
1027 printer 190 

Attribute 108 

Background processing 129 
Backplane 129 
Backup 129 
Bandwidth 30, 148 
Bank switching 148 
Bar codes 148 
BASIC 20, 168 
BBC 

BASIC 54-55 

disk 84 
disk commands 85 
Micro and Viewdata 133 

BCD 168, 195 
BDOS 182 
Benchmark 168 
Binary-coded decimal system 168, 

195 
Binary conversion programs 38 

files 185 
number system 36-37 

BIOS 182 
Bistable 168 
Bit 36, 188 
Bit-copier 188 
Bit-error 188 
Bit-manipulation 188 
Bit-mapped 188 
Bit-twiddling 188 
Block 188 
Block menu 27 
Book-keeping packages 152 
Boole, George 32, 126 
Boolean algebra 8, 32, 46, 106, 126 
Bootstrap 188 
Branson, Richard 180 
Breadboards 144, 188 
Break 208 
British Telecom 101 
Bubble memory 208, 210 
Bubble sort 208 
Buffers 208 
Bus 208 
Bushnell, Nolan 39 
Byte 36 

C 
C language 240 
CAD (see computer aided design) 
CAL (see computer aided learning) 
CALL 235, 238 
CAM (see computer aided 

manufacturing ) 
Capacitors 115, 139, 194 
Carry 176 
Cash Trader 152 
Cassette-based business programs 

113 
Cassette tape 4 

Ceefax 132 
Character set 19 
Chip development 162 
Circuit design 106 

tester 86 
CNC 235 

onsen eeremnneheeeneunensenecsesnnene-sieaesienneiscneiscnorabnhnsesacnseenincmteeh 

ancestries shoes ssh cnn bss ee nn 

Colour codes and resistors 138 
Command control program 182 
Commodore BASIC 94 
Commodore Business Machines 

119 
Commodore-64 10-12, 120 

disk commands 53 
DOS 52 
graphics 214, 232 
memory map 12 

Commodore SX-64 10 
Commodore Vic-20 120 
Computer aided design 171, 235 
Computer aided instruction 235 
Computer aided learning 235 
Computer aided manufacturing 235 
Computer-controlled devices 221 
Concurrent CP/M 240 
Control bus 135 
Cosine function 174 
CP/M 183, 239-240 
CPU 43, 148 

history 161 
internal organisation 136 
micro-operations 157 

Current 114 

D 
D-A converter 28, 223 
Data bus 135 
de Morgan’s law 46-48 
Decoders 146-147 
DFS 84 
Digital Research 239-240 
Diodes 138 
Disk 

density 124 
drives 4-5, 63-64, 84 
filing system 84 
operating systems 5, 181-183 
sectoring 124-125 

Display memory 117 
DOS 5 
Dot crawl 29 
Double precision 175 
Dragon Data’s Stock Recording 

System 172, 192, 212-213 
Dragon disk 

commands 105 
DOS 104 
disk unit 131 

Dragon 32 131 
Dragon 64 130-131 

E 
Educational software 21-23 
Electronic mail 101 

Encoders 146-147 
EEPROM 4 

Ethernet system 100 
Exam revision packages 61 
Expert system 81-83 

F 
Fagen, Frederico 220 
Feedback 221 
Fields 226 
File handling 184-185, 226-227 
Flip-flops 168 
Floppy disk 5 
Floppy tape 34 
Formatting disks 124-125 
Forsyth, Richard 81 
Full adder 165 

G 
Games Designer 41-42 
Games generator packages 41-42 
Gates, Bill 20 
Grafpad 169-171 
Graphic design 224-225 
Graphics generators 132-134 

tablets 169 
GSX 240 
GTITA chip 190 

H 
Half adder circuits 164-165 
Hard-wired modems 101 
Help menu 26 
Hexadecimal convertor 99 

number system 56-58 
Hinkley, Norton 199 
HULK 83 

IBM 89 
IBM PC 89-91 
IBM PC software 90 
Index & general purpose registers 

is) 
Indexed addressing 196-197 
Indirect addressing 197-198 
Inference engine 82 
Information provider (Prestel) 132- 

133 
Integer variables 175 
Integrated software 159 
Integration 172 
Intel 8008 161-163 

8080 161-163 
8086 161-163 
8088 161-163 

Interactive approach 112 



‘THE HOME COMPUTER ADVANCED COURSE 
INDEX TO ISSUES 1 TO 12 

Interactive video 203 
IP (Prestel) 132 

J 
J-K flip-flop 168 

K 
Karnaugh maps 92-93, 126 
Kildall, Gary 161, 239 
Knowledge-acquisition module 82 
Knowledge-based systems 81-83 

L 
LAN 100 
Languages 2 
Large scale integration 194 
Laser disks 201-203 
Latching switches 115 
Light emitting diodes 115 
Loading the accumulator 116 
Locus 224 
Logic 8-9, 32-33, 46-48, 66-67, 

92-93, 106-107, 126-127, 
144-145, 146-147, 164-165, 
166-167, 186-187, 194-195, 
206-207, 228-229 

LO-HI 96 
Loops 216-219 
Lovelace, Ada 13 
LSI 194 

M 
Machine code 16-19, 36-38, 56-58, 

76-78, 96-99, 116- 
118, 135-137, 156- 
158, 176-179, 196- 
198, 216-219, 236- 
238 

Mask 232 
MATE 66 
Medium scale integration 194 
Memory maps 58 
Microcomputers in education 21-23 
Microdrive 34-35 
Microledger 121, 152 
Micronet 800 101-103 
Microprocessors 43, 136, 148 

history161 
Microsoft 20 
Modem 13, 40, 102-103 
Monitor 29-31 
Monitor program (Spectrum, BBC, 

Commodore 64) 118 
MOS Technology 163 

6502, instruction set 163 
Motorola 43, 161 

6800 43,161 
680943, 161 
68000 series 43, 161 

MP/M 239-240 
MSI 194 

- nN 

MSX BASIC 142 
MSX Standard 141-143, 149-151 
Multimeter 86-87 
Multiplexing 207 
MUPID terminal 134 

N 
NAND gates 166-167 
Non-latching switches 115 
NOR gates 166-167, 228-229 
NOT 8-9, 32-33, 46, 146 
NTSC 30-31 

Object code 108 
Ohm, Georg 86, 114 
Ohm’s Law 114, 138 
Omicron’s Powerstock package 173 
Op-code 98-99 
Operating systems 181-183, 239 
OR 8-9, 32-33, 46, 66, 145 
Oracle 132 
Oric-1 140 
Oric Products International 140 
OS9 131 

P 
Paged memory 36-37 
PAL 30-31 
Parity bit generators 186-187 
Passive electrical components 138 
Peddle, Chuck 119 
PEEK 232-233 
Persistence 31 
PIPS 159 
POKE 232-233 
Power Law 114 
Prestel 101, 132 
Priority encoder 186-187 
Prism 101 
Processor status register 137, 176- 

177 
Program Counter 137 
PROM 4 
Pseudo-op 156, 236 
Pulsar’s Stock Control System 173 

Q 
Quick command menu 27 
Quick-Count’s Book-keeping 

System 121 
Quicksilva 6 
Quill 42 

R 
Radian measure 174 
Radix 148 

Records 226 
Registers 116, 229 

Relative jumps 219 
Relays 222 
Resistance 114 
Resistors 115, 139 

Retrieving records 227 
RGB 30 
Rockwell’s AIM 109-111 
Romox Corporation 39 
R-S flip-flops 228-229 

S 
S-100 system/bus 163 
SECAM 30-31 
Sector data block 125 
Sector header 125 
Sequential circuits 228-229 
Serial files 204-206, 226-227 
Servo motors 223 
Seven-segment displays 206-207 
Sharp PC-5000 210-211 
Sharp thermal printer 210 
Shiina, Takayoshii 159 
Shima, Masatoshi 220 
Short addressing 196 
Simplified XOR gate 47 
Sinclair Microdrive 34-35 
Sinclair Spectrum 50-51 
Sinclair Spectrum word processor 

Sine function 174-175 
Single-byte arithmetic 177 
Single precision 175 
Software portability 183 
Soldering 44-45 
SORD 159-160 
Source code 108 
Speakers 115 
Spectravideo 318 149-151 
Spectravideo 328 150 
Spectrum BASIC 14-15, 24-25 
Stack Light Rifle 230-231 
Stack pointer 137 
Start bit 108 
Stepper motors 223 
Stock control 172-173, 192-193, 

212-213 
Stop bit 108 
Storing machine code 117, 135-137 
Stringy floppy 34 
Subhunter program 214-215, 234 
SuperPET 120 
Synchronisation pulses 29 
Synchronous transmission 108 

T 
Tandy Corporation 199-200 
Tandy, Charles 199 
Tandy, David 199 
Teletext systems 132-133 
Thermal printers 70-72 
Tramiel, Jack 119 
Transistors 115, 139, 144, 194 
Trigonometric functions 154-155, 

174-175 
Truth table 8, 126 

TTL chips 194 
Turing, Alan 88 

U 
User interface 82 
User port 222 

V 
Variable resistors 115 
Venn diagrams 46, 126 
Vic-20 120 
Viewdata graphics 133 
Viewtext 133 
VIP 240 
Virgin Games 180 
VisiCalc 163 
VLSI 144, 194 
Voltage 114 
VTX 5000 102 

W 
Word processing 26-27 
WordStar 26-27 
Wozniak, Steve 163 

X 
Xerox PARC 100 
XOR gate 47, 186-187 

Z 
Zero page addressing 196 
Zilog 161-163, 220 
Z80 161-163, 220 
Z80 instruction set 179, 238 
Z800 162-163, 220 
Z8000 162-163, 220 
ZX Interface 1 34-35 

6502 microprocessor 163 
6502 instruction set 179, 238 
6800 microprocessor 43, 161 
6809 microprocessor 43, 161 
68000 series 43, 161 
8008 microprocessor 161-163 
8080 microprocessor 161-163 
8086 microprocessor 161-163 
8088 microprocessor 161-163 


